""" Copyright (C) 2015 John Evans This example code illustrates how to access and visualize a SMAP L1C HDF5 file in Python. If you have any questions, suggestions, or comments on this example, please use the HDF-EOS Forum (http://hdfeos.org/forums). If you would like to see an example of any other NASA HDF/HDF-EOS data product that is not listed in the HDF-EOS Comprehensive Examples page (http://hdfeos.org/zoo), feel free to contact us at eoshelp@hdfgroup.org or post it at the HDF-EOS Forum (http://hdfeos.org/forums). Usage: save this script and run $python SMAP_L1C_TB_30054_A_20200916T122049_R17000_001.h5.py The HDF file must be in your current working directory. Tested under: Python 3.7.7 :: Anaconda custom (64-bit) Last updated: 2020-09-16 """ import os import h5py import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import numpy as np # Reduce font size because dataset's long_name attribute value is very long. mpl.rcParams.update({'font.size': 8}) FILE_NAME = 'SMAP_L1C_TB_30054_A_20200916T122049_R17000_001.h5' with h5py.File(FILE_NAME, mode='r') as f: name = '/Global_Projection/cell_tb_h_fore' data = f[name][:] units = f[name].attrs['units'] units = units.decode('ascii', 'replace') long_name = f[name].attrs['long_name'] long_name = long_name.decode('ascii', 'replace') _FillValue = f[name].attrs['_FillValue'] valid_max = f[name].attrs['valid_max'] valid_min = f[name].attrs['valid_min'] invalid = np.logical_or(data > valid_max, data < valid_min) invalid = np.logical_or(invalid, data == _FillValue) data[invalid] = np.nan data = np.ma.masked_where(np.isnan(data), data) # Get the geolocation data latitude = f['/Global_Projection/cell_lat'][:] longitude = f['/Global_Projection/cell_lon'][:] m = Basemap(projection='cyl', resolution='l', llcrnrlat=-90, urcrnrlat=90, llcrnrlon=-180, urcrnrlon=180) m.drawcoastlines(linewidth=0.5) m.drawparallels(np.arange(-90, 91, 45)) m.drawmeridians(np.arange(-180, 180, 45), labels=[True,False,False,True]) m.scatter(longitude, latitude, c=data, s=1, cmap=plt.cm.jet, edgecolors=None, linewidth=0) cb = m.colorbar(location="bottom", pad='10%') cb.set_label(units) basename = os.path.basename(FILE_NAME) plt.title('{0}\n{1}'.format(basename, long_name)) fig = plt.gcf() # plt.show() pngfile = "{0}.py.png".format(basename) fig.savefig(pngfile)