""" Copyright (C) 2014 John Evans This example code illustrates how to access and visualize a NSIDC NISE HDF-EOS2 Grid file in Python. If you have any questions, suggestions, or comments on this example, please use the HDF-EOS Forum (http://hdfeos.org/forums). If you would like to see an example of any other NASA HDF/HDF-EOS data product that is not listed in the HDF-EOS Comprehensive Examples page (http://hdfeos.org/zoo), feel free to contact us at eoshelp@hdfgroup.org or post it at the HDF-EOS Forum (http://hdfeos.org/forums). Usage: save this script and run python NISE_SSMISF17_20110424.HDFEOS.s.py The HDF file must be in your current working directory. Tested under: Python 3.6.8 :: Anaconda custom (64-bit) Last updated: 2019-05-01 """ import os import re import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import pyproj import numpy as np USE_GDAL = False def run(FILE_NAME): # Identify the data field. DATAFIELD_NAME = 'Extent' if USE_GDAL: import gdal GRID_NAME = 'Southern Hemisphere' gname = 'HDF4_EOS:EOS_GRID:"{0}":{1}:{2}'.format(FILE_NAME, GRID_NAME, DATAFIELD_NAME) gdset = gdal.Open(gname) data = gdset.ReadAsArray() meta = gdset.GetMetadata() x0, xinc, _, y0, _, yinc = gdset.GetGeoTransform() nx, ny = (gdset.RasterXSize, gdset.RasterYSize) del gdset else: from pyhdf.SD import SD, SDC hdf = SD(FILE_NAME, SDC.READ) # Read dataset. Dataset name 'Extent' exists under different groups. # Use reference number to resolve ambiguity. data2D = hdf.select(hdf.reftoindex(12)) data = data2D[:,:].astype(np.float64) # Read global attribute. fattrs = hdf.attributes(full=1) ga = fattrs["StructMetadata.0"] gridmeta = ga[0] # Construct the grid. The needed information is in a global attribute # called 'StructMetadata.0'. Use regular expressions to tease out the # extents of the grid. ul_regex = re.compile(r'''UpperLeftPointMtrs=\( (?P[+-]?\d+\.\d+) , (?P[+-]?\d+\.\d+) \)''', re.VERBOSE) match = ul_regex.search(gridmeta) x0 = np.float(match.group('upper_left_x')) y0 = np.float(match.group('upper_left_y')) lr_regex = re.compile(r'''LowerRightMtrs=\( (?P[+-]?\d+\.\d+) , (?P[+-]?\d+\.\d+) \)''', re.VERBOSE) match = lr_regex.search(gridmeta) x1 = np.float(match.group('lower_right_x')) y1 = np.float(match.group('lower_right_y')) ny, nx = data.shape xinc = (x1 - x0) / nx yinc = (y1 - y0) / ny x = np.linspace(x0, x0 + xinc*nx, nx) y = np.linspace(y0, y0 + yinc*ny, ny) xv, yv = np.meshgrid(x, y) # Reproject into WGS84 lamaz = pyproj.Proj("+proj=laea +a=6371228 +lat_0=-90 +lon_0=0 +units=m") wgs84 = pyproj.Proj("+init=EPSG:4326") lon, lat= pyproj.transform(lamaz, wgs84, xv, yv) # Use a south polar azimuthal equal area projection. m = Basemap(projection='splaea', resolution='l', boundinglat=-60, lon_0=0) m.drawcoastlines(linewidth=0.5) m.drawparallels(np.arange(-90, 0, 15), labels=[1, 0, 0, 0]) m.drawmeridians(np.arange(-180, 180, 30), labels=[0, 0, 0, 1]) # Bin the data as follows: # 0 -- snow-free land # 1-20% sea ice -- blue # 21-40% sea ice -- blue-cyan # 41-60% sea ice -- blue # 61-80% sea ice -- cyan-blue # 81-100% sea ice -- cyan # 101 -- permanent ice # 103 -- dry snow # 252 mixed pixels at coastlines # 255 ocean lst = ['#004400', '#0000ff', '#0044ff', '#0088ff', '#00ccff', '#00ffff', '#ffffff', '#440044', '#191919', '#000000', '#8888cc'] cmap = mpl.colors.ListedColormap(lst) bounds = [0, 1, 21, 41, 61, 81, 101, 103, 104, 252, 255] tickpts = [0.5, 11, 31, 51, 71, 91, 102, 103.5, 178, 253.5] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) # The corners cause trouble, so chop them out. idx = slice(5, 721) m.pcolormesh(lon[idx, idx], lat[idx, idx], data[idx, idx], latlon=True, cmap=cmap, norm=norm) color_bar = plt.colorbar() color_bar.set_ticks(tickpts) color_bar.set_ticklabels(['snow-free\nland', '1-20% sea ice', '21-40% sea ice', '41-60% sea ice', '61-80% sea ice', '81-100% sea ice', 'permanent\nice', 'dry\nsnow', 'mixed pixels\nat coastlines', 'ocean']) color_bar.draw_all() basename = os.path.basename(FILE_NAME) long_name = DATAFIELD_NAME plt.title('{0}\n{1}'.format(basename, long_name)) fig = plt.gcf() # plt.show() pngfile = "{0}.s.py.png".format(basename) fig.savefig(pngfile) if __name__ == "__main__": hdffile = 'NISE_SSMISF17_20110424.HDFEOS' run(hdffile)