% % This example code illustrates how to access and visualize NSIDC % AMSR_E Daily Ocean version 4 L3 HDF-EOS2 Grid file in MATLAB. % % If you have any questions, suggestions, comments on this example, % please use the HDF-EOS Forum (http://hdfeos.org/forums). % % If you would like to see an example of any other NASA HDF/HDF-EOS % data product that is not listed in the HDF-EOS Comprehensive Examples % page (http://hdfeos.org/zoo), feel free to contact us at % eoshelp@hdfgroup.org or post it at the HDF-EOS Forum % (http://hdfeos.org/forums). % % Usage:save this script and run (without .m at the end) % % $matlab -nosplash -nodesktop -r AMSR_E_L3_DailyOcean_V04_20020619_hdf % % Tested under: MATLAB R2018b % Last updated: 2019-01-04 import matlab.io.hdfeos.* import matlab.io.hdf4.* % Opening the HDF-EOS2 Grid File FILE_NAME = 'AMSR_E_L3_DailyOcean_V04_20020619.hdf'; file_id = gd.open(FILE_NAME, 'rdonly'); % Reading Data from a Data Field GRID_NAME = 'GlobalGrid'; grid_id = gd.attach(file_id, GRID_NAME); DATAFIELD_NAME = 'High_res_cloud'; data1 = gd.readField(grid_id, DATAFIELD_NAME, [], [], []); % Convert M-D data to 2-D data data = data1; % Convert the data to double type for plot data = double(data); % Transpose the data to match the map projection data = data'; % Get information about the spatial extents of the grid. [xdimsize, ydimsize, upleft, lowright] = gd.gridInfo(grid_id); % We need to readjust the limits of latitude and longitude. % HDF-EOS is using DMS(DDDMMMSSS.SS) format to represent degrees. % So to calculate the lat and lon in degree, one needs to convert minutes % and seconds into degrees. % The following is the detailed description on how to calculate the latitude and longitude range based on lowright and upleft. % One should observe the fact that 1 minute is 60 seconds and 1 degree is 60 minutes. % First calculate the difference of .SS between lowright and upleft: lowright_ss = lowright * 100 - floor(lowright) * 100; upleft_ss = upleft * 100 - floor(upleft) * 100; dss = lowright_ss - upleft_ss; % Then calculate the difference of SSS between lowright and upleft: lowright_s = mod(floor(lowright),1000); upleft_s = mod(floor(upleft),1000); ds =lowright_s - upleft_s +dss/100; % Then calculate the difference of MMM between lowright and upleft: lowright_m = mod(floor(lowright/1000),1000); upleft_m = mod(floor(upleft/1000),1000); dm = lowright_m-upleft_m + ds/60; % Then calculate the difference of DDD between lowright and upleft: lowright_d = floor(lowright/1000000); upleft_d = floor(upleft/1000000); dd = lowright_d-upleft_d + dm/60; lat_limit = dd(2); lon_limit = dd(1); % We need to calculate the grid space interval between two adjacent points scaleX = lon_limit/xdimsize; scaleY = lat_limit/ydimsize; % By default HDFE_CENTER is assumed for the offset value, which assigns 0.5 to both offsetX and offsetY. offsetX = 0.5; offsetY = 0.5; % Since this grid is using geographic projection, the latitude and longitude value will be calculated based on the formula: % (i+offsetX)*scaleX+leftX for longitude and (i+offsetY)*scaleY+leftY for latitude. for i = 0:(xdimsize-1) lon_value(i+1) = (i+offsetX)*(scaleX) + upleft_d(1); end for j = 0:(ydimsize-1) lat_value(j+1) = (j+offsetY)*(scaleY) + upleft_d(2); end % Convert the data to double type for plot lon = double(lon_value); lat = double(lat_value); % Detach Grid object. gd.detach(grid_id); gd.close(file_id); % Reading attributes from the data field SD_id = sd.start(FILE_NAME, 'rdonly'); DATAFIELD_NAME = 'High_res_cloud'; sds_index = sd.nameToIndex(SD_id, DATAFIELD_NAME); sds_id = sd.select(SD_id, sds_index); % Read units from the data field. units_index = sd.findAttr(sds_id, 'Unit'); units = sd.readAttr(sds_id, units_index); % Read scale_factor from the data field. scale_index = sd.findAttr(sds_id, 'Scale'); scale = sd.readAttr(sds_id, scale_index); scale = double(scale); % Terminate access to the corresponding data set. sd.endAccess(sds_id); % Close the file. sd.close(SD_id); % Handle fill value. data(data==-9999) = NaN; % Apply scale factor. data = data*scale; % Plot the data using contourfm and axesm latlim = [floor(min(min(lat))),ceil(max(max(lat)))]; lonlim = [floor(min(min(lon))),ceil(max(max(lon)))]; min_data = floor(min(min(data))); max_data = ceil(max(max(data))); f = figure('Name', FILE_NAME, 'Renderer', 'zbuffer', ... 'Position', [0,0,800,600], 'visible', 'off'); axesm('MapProjection','eqdcylin','Frame','on','Grid','on', ... 'MapLatLimit', latlim,'MapLonLimit',lonlim, ... 'MeridianLabel','on','ParallelLabel','on', ... 'MLabelParallel','south'); coast = load('coast.mat'); surfacem(lat,lon,data); colormap('Jet'); caxis([min(min(data)) max(max(data))]); h = colorbar('YTick', min(min(data)):0.2:max(max(data))); plotm(coast.lat,coast.long,'k') tightmap; title({FILE_NAME; 'HIgh res cloud'}, 'Interpreter', 'None', ... 'FontSize',12,'FontWeight','bold'); set (get(h, 'title'), 'string', units, 'FontSize',12,'FontWeight','bold'); saveas(f,[FILE_NAME '.m.png']); exit;