% % This example code illustrates how to access and visualize the % yearly average of multiple LAADS MODIS MOD08_D3 L3 Grid files in MATLAB. % % If you have any questions, suggestions, comments on this % example, please use the HDF-EOS Forum (http://hdfeos.org/forums). % % % If you would like to see an example of any other NASA HDF/HDF-EOS data % product that is not listed in the HDF-EOS Comprehensive Examples page % (http://hdfeos.org/zoo), feel free to contact us at eoshelp@hdfgroup.org % or post it at the HDF-EOS Forum (http://hdfeos.org/forums). % % Usage:save this script and run (without .m at the end) % % $matlab -nosplash -nodesktop -r MOD08_D3_A2001_y % % Tested under: MATLAB R2023a % Last updated: 2023-04-17 import matlab.io.hdfeos.* import matlab.io.hdf4.* % We assume that all MOD08_D3 L3 files are in the current working directory. thepath = '.'; % Read data from a data field. % Change this for a different data set. DATAFIELD_NAME = 'Aerosol_Optical_Depth_Land_Ocean_Mean'; % DATAFIELD_NAME = 'Cloud_Top_Temperature_Mean'; D = dir(fullfile(thepath, 'MOD08_D3.A200*hdf')); for k = 1:numel(D) FILE_NAME = fullfile(thepath, D(k).name) GRID_NAME='mod08'; if k == 1 % Read attributes from the data field. SD_id = sd.start(FILE_NAME, 'rdonly'); sds_index = sd.nameToIndex(SD_id, DATAFIELD_NAME); sds_id = sd.select(SD_id, sds_index); % Read _FillValue from the data field. fillvalue_index = sd.findAttr(sds_id, '_FillValue'); fillvalue = sd.readAttr(sds_id, fillvalue_index); % Read units from the data field. units_index = sd.findAttr(sds_id, 'units'); units = sd.readAttr(sds_id, units_index); % Read scale_factor from the data field. scale_index = sd.findAttr(sds_id, 'scale_factor'); scale = sd.readAttr(sds_id, scale_index); % Read add_offset from the data field. offset_index = sd.findAttr(sds_id, 'add_offset'); offset = sd.readAttr(sds_id, offset_index); % Terminate access to the corresponding data set. sd.endAccess(sds_id); % Close the file. sd.close(SD_id); end % Open HDF-EOS2 file. file_id = gd.open(FILE_NAME, 'rdonly'); % Open grid. grid_id = gd.attach(file_id, GRID_NAME); data = gd.readField(grid_id, DATAFIELD_NAME, [], [], []); % Read lat and lon data. lon = gd.readField(grid_id, 'XDim', [], [], []); lat = gd.readField(grid_id, 'YDim', [], [], []); % Convert the data to double type for plot. data=double(data); lon=double(lon); lat=double(lat); % Replace fill value with NaN. data(data==fillvalue) = NaN; % Filter data based on lat/lon region. (e.g., 20~60E & 0~30N) f_x = (lon > 20.0 & lon < 60.0); f_y = (lat > 0.0 & lat < 30.0); data = data(f_x, f_y); % Multiply scale and adding offset, the equation is scale *(data-offset). data = scale*(data-offset); % Detach from the Grid object. gd.detach(grid_id); gd.close(file_id); % Replace time value from file name. [filepath, name, ext] = fileparts(FILE_NAME); strs = split(name, "."); str = strs(2); % Extract day. (e.g., A2021036) str_year = extractBetween(str,2,5); year = str2double(str_year); time(:) = year; writematrix(horzcat(time, mean(data(:), "omitmissing")), 'outy.csv', ... 'WriteMode','append'); end % Read filtered data to calculate average. A = readtable('outy.csv'); B = varfun(@mean, A, 'InputVariables', 2,... 'GroupingVariables', 1); % Draw plot. f = figure('Name', 'MOD08_D3 Yearly Average', 'visible', 'off'); plot(B.Var1, B.mean_Var2); xtickformat('%d'); xticks(B.Var1); xlabel('Year'); % Put title. tstring = {'MOD08_D3 Yearly Average [0~30N] & [20~60E]';DATAFIELD_NAME}; title(tstring, 'Interpreter', 'none', 'FontSize', 16, ... 'FontWeight','bold'); % The following fixed-size screen size will look better in PNG if % your screen is too large. scrsz = [1 1 800 600]; set(f, 'position', scrsz, 'PaperPositionMode', 'auto'); saveas(f, ['MOD08_D3_A2001_y.m.png']); exit;