% % This example code illustrates how to access and visualize the % daily average of multiple LAADS MODIS MOD04_3K L2 swath files in MATLAB. % % If you have any questions, suggestions, comments on this example, please use % the HDF-EOS Forum (http://hdfeos.org/forums). % % % If you would like to see an example of any other NASA HDF/HDF-EOS data % product that is not listed in the HDF-EOS Comprehensive Examples page % (http://hdfeos.org/zoo), feel free to contact us at eoshelp@hdfgroup.org % or post it at the HDF-EOS Forum (http://hdfeos.org/forums). % % Usage:save this script and run (without .m at the end) % % $matlab -nosplash -nodesktop -r MOD04_3K_A2022 % % Tested under: MATLAB R2021a % Last updated: 2022-02-08 import matlab.io.hdfeos.* import matlab.io.hdf4.* % We assume that all MOD04_3K L2 files are in the current working directory. thepath = '.'; % Read data from a data field. DATAFIELD_NAME='Optical_Depth_Land_And_Ocean'; D = dir(fullfile(thepath, 'MOD04_3K.A2022*.*.hdf')); for k =1:numel(D) FILE_NAME = fullfile(thepath, D(k).name); SWATH_NAME='mod04'; if k == 1 % Read attributes from the data field. SD_id = sd.start(FILE_NAME, 'rdonly'); sds_index = sd.nameToIndex(SD_id, DATAFIELD_NAME); sds_id = sd.select(SD_id, sds_index); % Read _FillValue from the data field. fillvalue_index = sd.findAttr(sds_id, '_FillValue'); fillvalue = sd.readAttr(sds_id, fillvalue_index); % Read units from the data field. units_index = sd.findAttr(sds_id, 'units'); units = sd.readAttr(sds_id, units_index); % Read scale_factor from the data field. scale_index = sd.findAttr(sds_id, 'scale_factor'); scale = sd.readAttr(sds_id, scale_index); % Read add_offset from the data field. offset_index = sd.findAttr(sds_id, 'add_offset'); offset = sd.readAttr(sds_id, offset_index); % Terminate access to the corresponding data set. sd.endAccess(sds_id); % Close the file. sd.close(SD_id); end % Open HDF-EOS2 file. file_id = sw.open(FILE_NAME, 'rdonly'); % Open swath. swath_id = sw.attach(file_id, SWATH_NAME); data = sw.readField(swath_id, DATAFIELD_NAME, [], [], []); % Read lat and lon data. lon = sw.readField(swath_id, 'Longitude', [], [], []); lat = sw.readField(swath_id, 'Latitude', [], [], []); % Read time. time = sw.readField(swath_id, 'Scan_Start_Time', [], [], []); % Convert the data to double type for plot. data=double(data); lon=double(lon); lat=double(lat); % Filter data based on lat/lon region. (e.g., 30~50E & 0~20N) filter = (data~=fillvalue & ... lon > 30.0 & lon < 50.0 & ... lat > 0.0 & lat < 20.0); % Filter data based on lat/lon 1 degree. (e.g., 40.0E & 10.0N) filter = (data~=fillvalue & ... lon >= 40.0 & lon < 41.0 & ... lat >= 10.0 & lat < 11.0); data = data(filter); lat = lat(filter); lon = lon(filter); time = time(filter); % Multiply scale and adding offset, the equation is scale *(data-offset). data = scale*(data-offset); % Detach from the Swath object. sw.detach(swath_id); sw.close(file_id); % Replace time value from file name. % If you want to plot data at the hour/minute/second level, % comment it out to use the raw data. [filepath,name,ext] = fileparts(FILE_NAME); strs = split(name, "."); str = strs(2); % Extract day. (e.g., A2022036) day = extractBetween(str,6,8); time(:) = str2double(day); writematrix(horzcat(time(:), lat(:), lon(:), data(:)), 'out.csv', ... 'WriteMode','append'); end % Read filtered data to calculate average. A = readtable('out.csv'); B = varfun(@mean,A,'InputVariables',4,... 'GroupingVariables',1); % Draw plot. f = figure('Name', 'MOD04_3K Daily Average', 'visible', 'off'); plot(B.Var1, B.mean_Var4); xtickformat('%d'); xticks(B.Var1); xlabel('Day in 2022'); % Put title. tstring = {'MOD04_3K Daily Average at lon=40E lat=10N';DATAFIELD_NAME}; title(tstring, 'Interpreter', 'none', 'FontSize', 16, ... 'FontWeight','bold'); % The following fixed-size screen size will look better in PNG if % your screen is too large. scrsz = [1 1 800 600]; set(f, 'position', scrsz, 'PaperPositionMode', 'auto'); saveas(f, ['MOD04_3K_A2022.m.png']); exit;