% % This example code illustrates how to access and visualize % LP DAAC MOD11C2 v6 HDF-EOS2 Grid file using MATLAB. % % If you have any questions, suggestions, comments on this example, please % use the HDF-EOS Forum (http://hdfeos.org/forums). % % If you would like to see an example of any other NASA HDF/HDF-EOS data % product that is not listed in the HDF-EOS Comprehensive Examples page % (http://hdfeos.org/zoo), feel free to contact us at eoshelp@hdfgroup.org or % post it at the HDF-EOS Forum (http://hdfeos.org/forums). % % Usage: save this script and run (without .m at the end) % % $matlab -nosplash -nodesktop -r MOD11C2_A2007073_006_2015312165940_hdf % % Tested under: MATLAB R2017a % Last updated: 2018-04-16 import matlab.io.hdfeos.* import matlab.io.hdf4.* FILE_NAME='MOD11C2.A2007073.006.2015312165940.hdf'; GRID_NAME='MODIS_8DAY_0.05DEG_CMG_LST'; DATAFIELD_NAME='LST_Night_CMG'; % Open the HDF-EOS2 Grid file. file_id = gd.open(FILE_NAME, 'rdonly'); % Attach to the grid. grid_id = gd.attach(file_id, GRID_NAME); % Read the dataset. data = gd.readField(grid_id, DATAFIELD_NAME, [], [], []); % Detach Grid object. gd.detach(grid_id); gd.close(file_id); % Transpose the data to match the map projection. data=data'; % We calculate lat and lon manually. [latdim, londim] = size(data); for i=1:latdim lat(i)=-(180./latdim)*(i-1+0.5)+90; end for j=1:londim lon(j)=(360./londim)*(j-1+0.5)-180; end % Convert the data to double type for plot. data=double(data); % Read attributes using SD interface. SD_id = sd.start(FILE_NAME, 'rdonly'); sds_index = sd.nameToIndex(SD_id, DATAFIELD_NAME); sds_id = sd.select(SD_id, sds_index); % Read _FillValue from data field. fillvalue_index = sd.findAttr(sds_id, '_FillValue'); fillvalue = sd.readAttr(sds_id, fillvalue_index); % Get the long name from data field. long_name_index = sd.findAttr(sds_id, 'long_name'); long_name = sd.readAttr(sds_id, long_name_index); % Read units from the data field. units_index = sd.findAttr(sds_id, 'units'); units = sd.readAttr(sds_id, units_index); % Read scale_factor from the data field. scale_index = sd.findAttr(sds_id, 'scale_factor'); scale = sd.readAttr(sds_id, scale_index); scale = double(scale); % Read add_offset from the data field. offset_index = sd.findAttr(sds_id, 'add_offset'); offset = sd.readAttr(sds_id, offset_index); offset = double(offset); % Read valid_range from the data field. range_index = sd.findAttr(sds_id, 'valid_range'); range = sd.readAttr(sds_id, range_index); % Terminate access to the corresponding data set. sd.endAccess(sds_id); % Close the file. sd.close(SD_id); % Replace the filled value with NaN. data(data==fillvalue) = NaN; data(data > double(range(2))) = NaN; data(data < double(range(1))) = NaN; % Multiply scale and add offset, the equation is (data-offset) / scale. data = (data-offset) * scale; % create the graphics figure -- 'visible'->'off' = off-screen rendering f=figure('Name', FILE_NAME, ... 'Renderer', 'zbuffer', ... 'Position', [0,0,800,600], ... 'visible', 'off'); axesm('MapProjection','eqdcylin', ... 'Frame','on','Grid','on', ... 'FontSize', 5, ... 'MeridianLabel','on','ParallelLabel','on', ... 'MLabelParallel','south'); % surfm() is faster than controufm. surfm(lat, lon, data); % Load the coastlines data file. coast = load('coast.mat'); % Plot coastlines in color black ('k'). plotm(coast.lat,coast.long,'k') tightmap; % Put colormap. colormap('Jet'); h=colorbar(); set (get(h, 'title'), 'string', units); % Set the title using long_name. title({FILE_NAME; long_name}, ... 'interpreter', 'none', 'FontSize',10,'FontWeight','bold'); saveas(f, [FILE_NAME '.m.png']); exit;