EOS MLS software

Instrument Data Processing

[http://mls.jpl.nasa.gov/]

Paul Wagner

[Paul.A.Wagner@Jpl.Nasa.Gov]

Jet Propulsion Laboratory

California Institute of Technology

February 27, 2002

Overview

- □ Background
 - ⇒ Mission
 - ⇒ Instrument
 - ⇒ Science objective
- ☐ Software and its division into levels:
 - ⇒ Level 1 outputs radiances
 - ⇒ Level 2 outputs atmospheric molecular abundances
 - ⇒ Level 3 outputs daily and monthly maps and means
- □ Data flow between levels
 - ⇒ HDF4 and HDF-EOS1
 - ⇒ Products of Levels 2 and 3 to be archived
 - ⇒ Metadata
- ☐ Future plans—HDF5 and HDF-EOS5

Background

The mission What is FOS MLS? ☐ Measure atmospheric temperature, water, ozone and significant molecules from $\sim 5-80$ km ☐ Joint project: JPL (US) and Edinburgh University (UK) ☐ Greatly enhanced follow-on to UARS MLS experiment ⇒ Looks and scans limb forward instead of sideways ⇒ More sensitive instruments and more precise measurements → More radiometers and more atmospheric molecules ⇒ Greater spectral bandwidth and lower altitudes ☐ Currently scheduled for launch in July 2003 on AURA spacecraft **The instrument** What instruments is it made up of? ☐ Four GHz (118, 190, 240, 640) and one THz (2.5) radiometers □ 1.6m primary antenna for the GHz instruments

emission from ~ 10 different molecules

□ 35 spectrometers of four different types, simultaneously observing

What are its objectives?

- ☐ Determine if stratospheric ozone is recovering
 - ⇒ Influence of human activities
 - ⇒ Arctic vulnerability
 - ⇒ Stratospheric chemistry producing or destroying ozone
- ☐ Improve understanding of climate variability
 - ⇒ Global warming
 - ⇒ Verify, constrain, or eliminate key climate models
 - ⇒ Distinguish local events (fires, volcanos) from widespread trends
- ☐ Pollution in the upper troposphere

Level 1 data processing

Purpose Convert unprocessed instrument data into calibrated radiances

- ☐ Accepts Level 0 and AURA spacecraft auxiliary data
 - ⇒ Level 0 includes all instrument telemetry
 - ⇒ SDP Toolkit expects ephemeris and attitude data to be binary and therefore platform-specific—we would prefer HDF or HDF-EOS
- ☐ Outputs (All HDF4 SD)
 - ⇒ Two radiance files to stay below 2GB limit imposed by HDF4
 - ⇒ One engineering file
 - ⇒ One orbit and attitude file
 - ⇒ May merge radiance files with move to HDF5

Level 2 data processing

Purpose Convert calibrated radiances into atmospheric abundances

- □ Accepts Level 1, AURA spacecraft auxiliary data, and operational meteorology data
 - ⇒ Meteorology–from NCEP and DAO–are expected to be HDF-EOS
- Outputs of two types
- □ L2GP
 - ⇒ HDF-EOS swath
 - ⇒ The standard product
 - ⇒ 1 molecule, 1 day in 1 file for most products
 - ⇒ Some may have multiple resolutions and/or include column amounts
- □ L2AUX
 - ⇒ HDF4 SD
 - ⇒ Format similar to Level 1 radiances
 - ⇒ Diagnostic

Level 2 data processing (continued)

Products More about our use of HDF-EOS swaths ☐ Geolocation coordinates: time, latitude, longitude, a	and pressure
□ Adhere to AURA guidelines found at⇒ Files created using HDF-EOS5 (Not yet); using Sw	ath data type
⇒ Structure names chosen from valids list	
⇒ Altitudes by way of a pressure grid	
⇒ Data fields ordered so that pressures increment fa	stest
⇒ Data fields stored in specified units	
⇒ HDF Fill and missing values both take value of Mi field attribute	ssing Value data
☐ (See talk by Cheryl Craig (NCAR) February 27 3:30 p	om)
Column amounts also stored as swaths; may use pre- to store tropopause pressure	ssure coordinate
 Quality, precision, and possibly other data stored in data 	file with product

Level 3 data processing

Purpose Map atmospheric abundances, calculate means ☐ Accepts Level 2 products **Outputs** Produced by two separate PGEs Daily program ☐ Processes standard Level 2 products ☐ Produces daily maps Monthly program ☐ Processes standard, diagnostic and noisy Level 2 products ☐ Produces monthly maps ☐ Produces daily and monthly zonal means

Level 3 data processing (continued)

Produc	t Map data
	Daily and monthly
	HDF-EOS grid: both latitudes and longitudes
	longitudes range from -180 to 179 deg every 4 deg
	latitudes range from $\pm 82 deg$ every $2 deg$
	Diurnally-varying daily products split into three modes—ascending, descending, and combined; not all products
	t Zonal mean data Daily and monthly
	Latitudes only, at Level 2 spacing
	Both daily and monthly split into three modes
	Use HDF-EOS Swath with no longitude data, unless new HDF-EOS Zonal Mean data type defined

Data flow

Data flow

Native Binary Bad stuff (mostly successful in not using it)
Platform-dependent; HDF and HDF-EOS are platform-independent
Currently forced to use with ephemeris and attitude data
HDF4 Good stuff (but we try to avoid it where we can)□ Forced to use it sometimes
☐ Will be moving to HDF5
HDF-EOS Very good stuff (try to make it the only one our users need) ☐ Standard geolocations for placing data
Metadata Necessary to enable users to order Level 1, 2, and 3 products ☐ Archived at DAAC
☐ Describe data product's species, date, goodness, etc.
☐ Combines static data (attribute names) with dynamic (their values)
Assume our users will order our data by product/day

Future plans

HDF5 and HDF-EOS5 Welcome or eagerly-awaited changes
☐ Finally some Linux support
☐ Awaiting IDL support
Other new features Further steps we might take
☐ We are open to good ideas
Challenges No guarantees—hard work ahead
☐ How to store diagnostics (point, grid, swath, SD?)
☐ How to make our data products easier to use?
☐ What standard names, units, axes can we adhere to or force others
to adhere to?
Zonal mean data don't fit neatly into any existing HDF-EOS structure