

Page 1 of 29

HDF4 to CF

A practical approach

MuQun Yang

January 8th, 2015

Version 1.0 draft

The HDF Group

Some popular Earth Science visualization and analysis tools cannot visualize NASA HDF4
and HDF-EOS2 files because these tools follow Climate and Forecast (CF) conventions to
access data whereas many NASA HDF4 and HDF-EOS2 files don’t follow the CF
conventions. In order to help users access NASA HDF data by these tools, The HDF
Group adopts a practical approach to translate HDF4 and HDF-EOS2 file and object
metadata information to follow CF conventions. This document provides the mapping
specification and reasons from HDF4 and HDF-EOS2 to CF. Based on the information
presented in this document, The HDF Group also implemented two software packages:
HDF4 to CF (H4toCF) conversion toolkit and the CF option of the HDF4 OPeNDAP
handler.

 Contents

Page 2 of 29

Contents

1. Introduction .. 4

1.1. Background .. 4

1.2. Motivation .. 4

1.3. Approach .. 4

1.4. About the rest of the document .. 5

2. General Mapping .. 6

2.1. Object and Attribute Mapping ... 6

2.1.1. HDF-EOS2 ... 6

2.1.2. HDF4 ... 6

2.1.3. HDF-EOS2 Hybrid .. 7

2.2. Name Mapping ... 8

2.2.1. HDF-EOS2 ... 8

2.2.2. HDF4 ... 9

2.2.3. HDF-EOS2 hybrid .. 11

2.2.4. Handle name clashing .. 11

3. Dimension Mapping .. 12

3.1. Common Mapping ... 12

3.1.1. Name Mapping ... 12

3.1.2. COARDS Requirement .. 12

3.1.3. Handle name clashing .. 12

3.2. Special mapping ... 12

3.2.1. HDF-EOS2 ... 12

3.2.2. HDF4 ... 12

3.2.3. HDF-EOS2 hybrid .. 13

4. Coordinate Mapping ... 14

4.1. Latitude and Longitude .. 14

4.1.1. HDF-EOS2 ... 14

4.1.2. HDF4 ... 15

4.2. Other coordinates .. 18

5. CF attributes .. 19

5.1. Coordinates .. 19

5.2. Units ... 19

 Contents

Page 3 of 29

5.3. _FillValue .. 19

5.4. valid_range(valid_min and valid_max) .. 20

5.5. scale_factor and add_offset... 20

5.6. long_name ... 21

6. References .. 22

7. Revision History .. 23

8. Acknowledgements ... 24

Appendix A: Obtain latitude and longitude for some NASA HDF4 products .. 25

Appendix B: Special handling from HDF4 and HDF-EOS2 to DAP2 ... 26

Appendix C: Using tools to supplement CF information ... 28

Appendix D: NASA HDF products that don’t follow CF data packing rules .. 29

 Introduction

Page 4 of 29

1. Introduction

1.1. Background

Thousands of NASA HDF4 [1] and HDF-EOS2 [2] products are widely used in scientific research, high
education, weather forecasts and decision making process for policy makers. However, a significant
amount of end users find that they cannot access and visualize many of these products in their favorite
tools. These tools include free scripting language tools such as FERRET and GrADs and the “click and go”
Java tools such as Panoply and IDV. One key reason for the data access failures is that the tools mostly
follow the Climate and Forecast (CF) conventions [3] to access the data whereas most NASA HDF4 and
HDF-EOS2 products do not follow CF conventions.

The CF conventions are metadata conventions for earth science data, intended to promote the
processing and sharing of files created with the NetCDF API, but most of its ideas relate to metadata

design in general, not specifically to netCDF. The CF evolves from Cooperative Ocean/Atmosphere
Research Data Service (COARDS), which has a similar purpose and is also widely used. CF is backward-
compatible with COARDS.

1.2. Motivation

In order to make NASA HDF4 and HDF-EOS2 products accessed by the tools that follow CF conventions
(CF tools hereafter), we translate key information required by CF tools to access these products into the
format that these tools can understand. Especially we aim to have Panoply and IDV users to be able to
simply click and visualize the HDF data contents in a user-friendly geographic map. Rather than
covering all NASA HDF4 and HDF-EOS2 products we aim to cover most popular NASA HDF4 and HDF-
EOS2 products requested from NASA data centers and our users.

1.3. Approach

Since our goal is to make CF tools correctly visualize NASA HDF4 and HDF-EOS2 products, our approach
is practical rather than theoretical. This can be identified on the following areas:

1) Whether the mapping is CF compliant

The mapping from HDF4 to CF is not fully CF compliant. We focus on the areas that are keys for the CF
tools to access and visualize the data. There are also areas that the CF tools accept variations of CF
conventions and it will cause confusion if the CF conventions are exactly followed. For those areas, we
simply ensure that the CF tools can access the HDF4 and HDF-EOS2 data correctly.

2) How to handle the key information not addressed by the CF conventions

Some information, mostly concentrated on how to handle coordinates, is necessary for CF tools to
visualize the data. However, no conventions on how to share the information are provided in the
current CF conventions. For such information, we try to provide the mapping for CF tools to visualize the
data according to our best knowledge about an individual product.

3) How to map the key missing information to CF

We observed that for some products, the CF information for tools to correctly visualize the data is either
hidden inside the HDF file or only available in the corresponding product specification documents. To

 Introduction

Page 5 of 29

handle such a case, our first step is to research the information. This step is often done by thoroughly
evaluating the file structure, reading the product documents and sometimes by communicating with the
corresponding NASA data center developers and even data producers. Then based on our best
knowledge resulting from the research, this information will be translated to the form by following the
CF conventions so that the CF tools can understand and generate a correct plot. The missing
information mainly concentrates on two areas: coordinates and the corresponding dimension
information and the information on how to pack the data in order to reduce the file size.

4) How to handle rarely used HDF4 and HDF-EOS2 objects in NASA products

We don’t provide the mapping specification for the HDF4 and HDF-EOS2 objects rarely used in NASA
HDF4 and HDF-EOS2 products. These objects include HDF-EOS2 point objects, HDF4 image objects,
palette objects and annotations.

5) How to verify if the mapping of HDF-EOS2 and HDF4 is sound

We implemented two software packages based on the information in this document. They are the CF
option of the HDF4 OPeNDAP handler [4] and H4CF conversion toolkit [5]. NASA sample files are provided
in the referred web pages. Readers can check the converted netCDF files or DAP2 output with CF tools
such as Panoply.

1.4. About the rest of the document

Section 2 provides the general mapping information from HDF4 and HDF-EOS2 to CF. Section 3 provides
the dimension mapping information. Section 4 focuses on the coordinate mapping. Section 5 addresses
the translation of HDF4 and HDF-EOS2 metadata information to CF attributes. We also provide four
Appendices. Appendix A lists the NASA HDF4 products of which latitudes and longitudes need to be
retrieved with special handlings to follow CF conventions. Appendix B provides the special handling of
HDF4 andHDF-EOS2 to DAP2. Appendix C provides information of some netCDF-style tools that can be
used to supplement information required by CF tools to access and visualize the data. Appendix D lists
some NASA HDF4 and HDF-EOS2 products that don’t follow the CF data packing rule.

 General Mapping

Page 6 of 29

2. General Mapping

In general, CF communities provide conventions for the variables, the associated dimensions and
attributes of the variables and the global attributes of the data file. A variable is usually a data array to
describe the quantity of a physical variable. A dimension of a variable gives the dimensional information
of the array that describes the variable. An attribute of a variable provides the metadata information
about the variable. A file attribute provides the metadata information about the whole file. In this
section, we will provide the mapping from HDF4 and HDF-EOS2 to general CF variables and file
attributes. The dimension and the coordinate handling will be discussed in section 3 and section 4
correspondingly.

2.1. Object and Attribute Mapping

2.1.1. HDF-EOS2

HDF-EOS2 has swath, grid and point objects. Each object consists of fields and attributes. Each field can
also have attributes. Since the NASA HDF-EOS2 point files are very rare, we decide not to provide any
mapping specification from HDF-EOS2 point objects to CF. HDF4 OPeNDAP handler and HDF4 to CF
conversion toolkit will ignore the mapping of HDF-EOS2 point objects. Since there is no equivalent CF
counterpart for an HDF-EOS2 object attribute, we map it to a CF file attribute to keep the information.
Swath and grid fields are mapped to CF variables. Field attributes are mapped to CF variable attributes.

Table 1 summarizes the mapping of the HDF-EOS2 to CF.

Table 1. HDF-EOS2 Field and Attribute to CF

HDF-EOS2 Object HDF-EOS2 Field/Attribute CF Variable/Attribute

Swath Data Field Variable

Geolocation Field Variable

Field Attribute* Variable Attribute

Attribute File Attribute

Grid Data Field Variable

Field Attribute* Variable Attribute

Attribute File Attribute

Point The mapping specification is not available

* Applications can only add one attribute _Fillvalue for swath or grid fields via HDF-EOS2 APIs.

2.1.2. HDF4

HDF4 has vgroup, vdata, SDS, image, palette and annotation objects. Since we find very few NASA HDF4
objects that include image, palette and annotation, we decide not to provide any mapping specification
for these objects. The HDF4 OPeNDAP handler and HDF4 to CF conversion toolkit will ignore the
mapping of HDF4 image, palette and annotation.

 General Mapping

Page 7 of 29

An HDF4’s SDS is like a data array that stores scientific data numbers. So an HDF4’s SDS is equivalent to a
CF variable. An attribute obtained by calling the HDF4’s SD APIs(SD Attribute) is equivalent to a CF file
attribute. Naturally an SD attribute is mapped to a CF file attribute, an SDS is mapped to a CF variable
and an SDS’s attribute is mapped to a CF variable attribute.

An HDF4 vdata is like a table that can have several fields. An HDF4 vgroup is logically like a container
that consists of HDF4 objects including another vgroup. Vgroup, vdata and vdata fields all can have
attributes. However, there are no equivalent CF objects for vdata and vgroup. To map vdata information
to CF, we map a vdata’s field to a CF variable. Attributes of a vdata field is mapped to attributes of the
corresponding CF variable. Attributes of vdata and vgroup are mapped to CF file attributes.

Table 2 summarizes the mapping of HDF4 object and attribute to CF.

 Table 2. HDF4 Object and Attribute to CF

HDF4 Object/Attribute CF Object/Attribute

SD Attribute File Attribute

SDS Variable

SDS Attribute Variable Attribute

Vdata No equivalent CF Object

Vdata Attribute File Attribute

Vdata Field Variable

Vdata Field Attribute Variable Attribute

Vgroup No equivalent CF Object

Vgroup Attribute File Attribute

Image The mapping specification is not
available.

Palette

Annotation

2.1.3. HDF-EOS2 Hybrid

HDF-EOS2 objects and attributes can be accessed by any HDF4 APIs. So HDF-EOS2 data producers can
use HDF4 APIs to add HDF4 objects or attributes to an HDF-EOS2 file. These added objects or attributes
cannot be accessed by HDF-EOS2 APIs. However, users still need to access the original HDF-EOS2 objects
via HDF-EOS2 APIs to correctly retrieve the geo-location information of these objects. The HDF-EOS2
files that contain information added by HDF4 APIs are called HDF-EOS2 hybrid files in this document.
Both HDF-EOS2 and HDF4 APIs are necessary to access the HDF-EOS2 hybrid files. Many MODIS and
MISR NASA HDF-EOS2 products are HDF-EOS2 hybrid files. For an HDF-EOS2 hybrid file, the HDF-EOS2

 General Mapping

Page 8 of 29

objects are mapped by following Table 1. The additional HDF4 objects and the added attributes are
mapped according to Table 2.

2.2. Name Mapping

According to the CF conventions, variable, dimension and attribute names should begin with a letter and
be composed of letters, digits, and underscores (‘_’). However, HDF4 object and attribute names can
contain any non-alphanumeric characters.

To follow CF conventions, the CF naming rule we follow is to change any non-alphanumeric character
inside an HDF4 object or attribute name to an underscore character. It is very possible that an HDF4
object name starts with a non-alphanumeric character and it is changed to an underscore according to
the CF naming rule. However, one may note that an underscore is not allowed to be the first character
in a CF name. So the above case violates the CF conventions. In reality, the CF tools accept the name
that starts with an underscore as a valid object name and generate the correct plot. So we still follow
this naming rule regardless of the violation of the CF conventions for this special case. This is one
example of the practical approach mentioned in the section 1.3.

2.2.1. HDF-EOS2

One HDF-EOS2 file can have multiple HDF-EOS2 objects such as grids or swaths. Each HDF-EOS2 object
can have attributes and fields. Each field can have attributes.

An object field name can be shared among different objects. For example, it is valid that an HDF-EOS2
grid named grid1 has a field named pressure and an HDF-EOS2 grid named grid2 has the same field
named pressure. However, the name of a CF variable is a unique key to identify this variable among
other variables. So to avoid obvious name clashing for the CF variable names mapped from HDF-EOS2
fields under different HDF-EOS2 objects, the CF variable name consists of an HDF-EOS2 object name
applied with the CF naming rule, an underscore character and an HDF-EOS2 field name applied with the
CF naming rule. For an HDF-EOS2 file that only has a single HDF-EOS2 object, it is not necessary to
distinguish among different objects, the HDF-EOS2 object name is omitted in the CF variable name. One
should be aware that it is also valid to keep an HDF-EOS2 object name inside the mapped CF variable
name even though there is only one HDF-EOS2 object name inside the HDF-EOS2 file. However, we
choose the current way for a practical reason. Long CF variable names may deteriorate the performance
for some CF tools to access the data. If saving the object name information is desirable, the application
that implements the mapping of HDF-EOS2 to CF can provide an attribute to store the object name.

Since a field attribute is associated with the corresponding field and the field name is mapped to a
unique CF variable name, the corresponding attribute name of a CF variable is just the field attribute
name applied with the CF naming rule.

As described in section 2.1.1, an HDF-EOS2 object attribute is mapped to a CF file attribute. To
distinguish the different object attributes that may share the same name, we form the corresponding CF
file attribute name by concatenating the string HDFEOS, the HDF-EOS2 object type name and the HDF-
EOS2 object name with its attribute name. An underscore character is used to connect the different
parts. For example, an HDF-EOS2 grid named grid1 has an attribute named gattribute. The mapped CF
file attribute name is HDFEOS_grid_grid1_gattribute.

Table 3 and 4 illustrate how HDF-EOS2 names are mapped to CF by examples.

 General Mapping

Page 9 of 29

Table 3. HDF-EOS2 Field and Field Attribute Name to CF

Number of
HDF-EOS2
objects

HDF-EOS2
Object
Name

HDF-EOS2
Field Name

CF variable Name HDF-EOS2 Field
Attribute Name

CF Variable
Attribute Name

Multiple gd?or_sw gs*field gd_or_sw_gs_field gs-fieldattr gs_fieldattr

Single gd?or_sw gs*field gs_field gs-fieldattr gs_fieldattr

Table 4. HDF-EOS2 Grid and Swath Attribute Name to CF

HDF-EOS2
Object Type

HDF-EOS2 Object
Name

Attribute Name CF File Attribute Name

Grid Mygrid gattr HDFEOS_grid_mygrid_gattr

Swath Myswath Sattr HDFEOS_swath_myswath_sattr

Since there may be many attributes in an HDF-EOS2 grid or swath, mapping all grid and swath attributes
to global attributes may be difficult for CF users to distinguish different attribute information. The
potential long attribute names listed in the table 4 make the situation even worse. So individual data
format or protocol that represent the CF output of the vdata and vgroup attributes may not follow the
naming conventions listed in the table 4. For example, DAP2 DAS representation of grid or swath
attributes can simply hold all the attributes in a grid or a swath in a DAS attribute container. Under such
a case, the application can choose to simply map grid or swath CF attribute names to be the
corresponding CF attribute names that apply the CF naming rule. According to our current
understanding, this will not affect the CF tools to visualize the data.

2.2.2. HDF4

An HDF4 SDS object can be attached to an HDF4 vgroup. Since individual SDS objects under different
HDF4 vgroups may share the same name, to avoid the obvious name clashing and to keep the group
hierarchy of the SDS that is attached to a vgroup, the SDS name mapped to CF should include all the
ancestral vgroup paths. The mapping procedure is as follows: first, an intermediate CF name of the SDS
is generated by using the underscore character to connect the parental vgroup path with the child
vgroup path and the last vgroup path with the SDS name retrieved via the SDS APIs; then the CF name of
this SDS object is generated by applying the CF naming rule to this intermediate name.

For an SDS object not attached to any HDF4 vgroups, the CF name of this SDS is generated by simply
applying the CF naming rule to the SDS names retrieved via the SDS APIs.

Like an SDS, an HDF4 vdata can also attach to an HDF4 vgroup. Although a vdata is not mapped to a CF
variable, a vdata field is mapped to a CF variable. Also like the handling of an SDS mapping, to avoid the
obvious name clashing and to keep the group hierarchical information of vdata field names, the CF name
of a vdata field includes the path of the vgroup that the corresponding vdata is attached to. Moreover,
to ensure the CF users understand that this CF variable is mapped from an HDF4 vdata field, string vdata
is prefixed before the vdata path and the string vdf (stands for vdata field) is used to connect the vdata
path and the vdata field name. An underscore is used to connect the adjacent components.

 General Mapping

Page 10 of 29

Since an SDS attribute is associated with the SDS and a CF variable name is the unique key to identify a
CF variable, the attribute name of the corresponding CF variable mapped from this SDS is obtained by
simply applying the CF naming rule to the SDS attribute name. The same approach also applies to the
mapping of a vdata field attribute.

Since an HDF4’s SD attribute is equivalent to a CF file attribute, the CF name of the corresponding SD
attribute is simply obtained by applying the CF naming rule to the SD attribute name.

An HDF4’s vdata attribute is mapped to a CF file attribute. To help the CF users identify if the attribute is
mapped from an HDF4 vdata attribute, the corresponding CF file attribute name is generated by
concatenating the string Vdata, the full path of the vdata , the string Attr and the vdata attribute name.
An underscore is used to connect the adjacent components.

An HDF4’s vgroup attribute is also mapped to a CF file attribute. For the similar reason like the
generation of the CF name of a vdata attribute, the corresponding CF name of a vgroup attribute is
generated by concatenating the string Vgroup, the full path of the vgroup, the string Attr and the vgroup
attribute name. An underscore is used to connect the adjacent components.

Table 5-7 illustrate how HDF4 object and attribute names are mapped to CF by examples.

Table 5. HDF4 SD, Vgroup and Vdata Attribute Name to CF

HDF4 Object Vgroup Path HDF4
Object
Name

HDF4
Attribute
Name

CF File Attribute Name

SD N/A N/A SD#attr SD_attr

Vdata vg vdata?1 vattr Vdata_vg_vdata_1_Attr_vattr

Vgroup vg vg1 vgattr Vgroup_vg_vg1_Attr_vgattr

*If SDS, vdata or vgroup don’t attach to any vgroups, simply map their names by following the CF naming rule.

Table 6. HDF4 SDS Object and Attribute Name to CF

Vgroup Path

for SDS

SDS name CF variable
name

SDS attribute CF Variable Attribute Name

/vg sds _vg_sds sds_attr sds_attr

*If SDS, vdata or vgroup don’t attach to any vgroups, simply map their own names.
*For the supported NASA HDF4 products, the first slash(‘/’) of the vgroup path is ignored. The whole group path may be ignored
for some products mainly due to the performance and restriction of some CF tools.

Table 7. HDF4 Vdata Field and Vdata Field Attribute Name to CF

Vgroup
Path

for vdata

Vdata
Name

Vdata
Field
Name

CF Variable Name Vdata Field
attribute

CF Variable Attribute
Name

vg myvdata vdfield Vdata_vg_myvdata_vdf_vdfield VF?attr VF_attr

 General Mapping

Page 11 of 29

Since there may be many HDF4 vgroup and vdata objects in an HDF4 file and each vgroup or vdata
object can potentially have many HDF4 attributes, mapping all vgroup and vdata attributes to global
attributes may be difficult for CF users to distinguish different attribute information. The potential long
attribute names listed in the table 5 and table 7 make the situation even worse. So individual data
format or protocol that represent the CF output of the vdata and vgroup attributes may not follow the
naming conventions listed in the table 5 and table 7. For example, DAP2 DAS representation of vdata or
vgroup attributes can simply hold all the attributes in a vdata or a vgroup in a DAS attribute container.
Under such a case, the application can choose to simply map vdata or vgroup CF attribute names to be
the corresponding CF attribute names that apply the CF naming rule. According to our current
understanding, this will not affect the CF tools to visualize the data.

2.2.3. HDF-EOS2 hybrid

We find that some added SDS objects share the same names with HDF-EOS2 grid or swath fields in NASA
HDF-EOS2 hybrid products. To avoid the massive name clashing and to distinguish the non-HDFEOS2
objects from the HDF-EOS2 objects, we generate the CF name of an added SDS object by appending a
string NONEOS to the original SDS name. For example, a field name in an HDF-EOS2 grid is Temperature.
The data producer decides to add another SDS Temperature to this file. Both the HDF-EOS2 field and the
added SDS are mapped to CF variables sharing the same name Temperature. The CF name of the SDS
added by the HDF4 APIs Temperature is changed to Temperature_NONEOS.

The mapping of other objects and attributes follows section 2.2.1 and 2.2.2.

2.2.4. Handle name clashing

A CF variable name is a unique key to identify this variable. The attribute name of a CF variable is also a
unique key to identify this attribute in the variable. File attributes also use attribute names to distinguish
this attribute from other file attributes. However, HDF4 allows different objects to share the same name.
Although by adding the group path, obvious name clashings may be avoided, still a CF variable or a CF
attribute mapped from HDF4 or HDF-EOS2 may have name clashings with other CF variables or other CF
attributes. A certain rule needs to be applied to make the clashed names unique so that any CF variable
or attribute can be identified.

The rule to handle the name clashing is illustrated on the following:

If one CF variable shares the same name with another CF variable, the way we resolve the name clashing
is to add an underscore and the index number (1,2,3 etc.) at the end of the second CF variable name. For
example, two CF variables share the same name temperature. The first picked variable name should still
be temperature. The second variable name becomes temperature_1. This rule will not apply to the
added SDS objects in an HDF-EOS2 hybrid file. The handling of the name clashing for added SDS objects
in an HDF-EOS2 hybrid file was described in section 2.2.3.

Optionally, when a name clashing occurs, one can add an attribute to store the original variable name if
keeping the original variable name information is desirable.

 Dimension Mapping

Page 12 of 29

3. Dimension Mapping

A CF variable is usually represented as a data array. According to CF conventions, each dimension of the
array is required to present as a CF dimension. Each CF dimension consists of two components:
dimension name and dimension length. The length of a dimension is simply the number of elements of
the corresponding array dimension. The name of a dimension should be provided by the applications or
generated by the data format libraries. CF dimensions need to be provided in order for the tools to
visualize the data products properly. Section 3.1 provides common mapping information from HDF4
and HDF-EOS2 dimensions to CF. Section 3.2 provides the specific mapping information related to the
HDF4 and HDF-EOS2 dimensions.

3.1. Common Mapping

3.1.1. Name Mapping

The dimension names should also follow CF’s naming conventions. So the CF naming rule discussed in
section 2 should be applied to all the dimension names mapped from HDF4 or HDF-EOS2. However, no
vgroup path needs to be considered since like an attribute, a dimension is attached to a variable.

3.1.2. COARDS Requirement

COARDS conventions require the dimension name to be the same as the coordinate variable name when
the coordinate variable is stored as one dimensional array. Since CF tools still follow COARDS
conventions to identify coordinate variables, so if applicable, we follow the COARDS conventions when
generating the dimension name. For example, the values of coordinate variables lat and lon are stored
in one dimensional array. The dimension name of lat is YDim and the dimension name of lon is XDim.
To follow COARDS, the dimension name XDim for all the dimensions that have such a name is changed
to lat. The dimension name YDim is changed to lon. Since CF is backward compatible with COARDS, CF
conventions are not violated.

3.1.3. Handle name clashing

Like a CF variable, a CF dimension name is also the key to identify this dimension among all dimensions.
It is allowable for HDF4 and HDF-EOS2 to have duplicate dimension names associated with a variable. So
the same name clashing rule described in section 2.2.4 is also applied to the dimension names.

3.2. Special mapping

3.2.1. HDF-EOS2

HDF-EOS2 swath and grid require the data producer to provide the same dimension information as the
CF conventions require. So the dimension mapping from HDF-EOS2 to CF is one to one mapping.

3.2.2. HDF4

In HDF4, data values of an SDS or a vdata field are also stored in an array. The length of each dimension
is specified. However, HDF4 does not require the data producers to provide dimension names.

For each dimension in an SDS object, if an application does not provide a name, HDF4 library will assign
a unique dimension name. This library-generated dimension name always has the form fakeDim1,
fakeDim2 etc. Each library-generated dimension name is different than other library generated

 Dimension Mapping

Page 13 of 29

dimension names even though they may share the same dimension length. If there are many SDS
objects in an HDF4 file and the dimension names of these SDS objects are not specified, one may
observe many HDF4 library generated dimension names in the HDF4 file. These library generated
dimension names often share the same dimension length. These fake dimension names are not useful to
understand the physical meanings of the data. It may even be difficult for users to figure out why so
many HDF4 library-generated fake dimension names are assigned to the same dimension length. So to
avoid such confusions and still to follow the CF conventions, we condense the fake dimensions that
share the same dimension length to one dimension.

For a field in a vdata object, neither an application nor the HDF4 library can add any dimension names to
the field. However, the vdata record and the vdata field order are equivalent to dimension lengths. To
follow the CF conventions for the variable mapped from the vdata field, dimension names are specified
in the following form:

The corresponding dimension name for the vdata record is

 VDFDim0_vdata_<this vdata name>_vdf_<this vdata field name>

If the vdata field order is greater than 1, the corresponding vdata field is equivalent to a two-
dimensional array variable. The order of the vdata field is the length of the fastest changing dimension.
The corresponding dimension name for this dimension is

VDFDim1_vdata_<this vdata name>_vdf_<this vdata field name>

The prefixes VDFDim0, VDFDim1, vdata and vdf identify that this dimension is mapped from vdata.

For the illustration purpose, the vdata name and vdata field name listed in the above representations
are embraced by the <> bracket.

3.2.3. HDF-EOS2 hybrid

The dimension mapping follows the mapping of HDF4 and HDF-EOS2.

 Coordinate Mapping

Page 14 of 29

4. Coordinate Mapping

Coordinate conventions are crucial for Earth Science applications to visualize and analyze the data.
However, the coordinate conventions in CF are, to some degree, fundamentally different than the
conventions specified in HDF4 and HDF-EOS2. Therefore, we dedicate this whole section to describe
how the coordinates in HDF4 and HDF-EOS2 are mapped to CF.

4.1. Latitude and Longitude

In this subsection, we address the mapping of the most important coordinates for Earth Sciences:
latitude and longitude.

4.1.1. HDF-EOS2

4.1.1.1. Grid

HDF-EOS2 Grid applications don’t need to provide latitude and longitude values at each data point.
Instead, applications can use the HDF-EOS2 APIs to store several parameters such as the number of
elements, the grid boundary values and projection information for the latitude and longitude. However,
CF requires that the latitude and longitude values are explicitly represented as data arrays. Latitude and
longitude values in an HDF-EOS2 grid need to be retrieved to allow CF tools to identify the locations of
data values.

4.1.1.1.1. General Mapping

An HDF-EOS2 API can be used to retrieve latitude and longitude values at each grid point. CF two-
dimensional latitude and longitude coordinate variables are then defined to store the retrieved values.
In general, the coordinate attributes described in section 5.1 should be created for each field that has
values at every location described by latitude and longitude. The only exception is for the case
described in section 4.1.1.2.

4.1.1.1.2. Dimension Reducing

For some grid projections (geographic etc.), the latitude value is the same at each data point along one
horizontal grid line. The longitude value is the same at each data point along the grid line perpendicular
to the equal-latitude grid line. For such a projection, the two-dimensional data arrays that store latitude
and longitude are condensed to two orthogonal one-dimensional data arrays. Two one-dimensional
latitude and longitude coordinate variables can be then defined. Mapping the latitude and longitude in
this way can save the disk space and make CF tools quickly pin down the grid location and generate the
plot.

4.1.1.1.3. Lambert Azimuthal Equal-Area Projection

Some NASA HDF-EOS2 grid products use Lambert azimuthal equal-area projection to store the grid data.
We observed that the longitude values retrieved by using the HDF-EOS2 API contain infinite number
around the North Pole and the South Pole. This causes the CF tools fail to open the file. After
communicating with the data provider of these data products and the HDF-EOS2 library developer, we
found out that having the infinite numbers inside the longitude in the North Pole or the South Pole for
this projection is not an HDF-EOS2 library bug. We also found out that it is acceptable to use the nearest
longitude values around the Poles to replace the infinite number for the visualization purpose. So for

 Coordinate Mapping

Page 15 of 29

this projection, we use the nearest neighbor method to interpolate the longitude around the South Pole
and the North Pole.

4.1.1.1.4. Space Oblique Mercator projection

Some NASA HDF-EOS2 grid products also use the space oblique mercator projection to store the grid
data. The values of latitude and longitude retrieved by the HDF-EOS2 API for this type of grid have to be
stored in three-dimensional arrays. Currently CF conventions only cover the cases when the latitude and
longitude values are stored as one or two dimensional arrays. One way to make this type of grid follow
CF conventions is to transform a three-dimensional array to a two-dimensional array. While it may not
be difficult to transform latitude and longitude, to make the corresponding physical variables visualized
by CF tools, all the data representation of these variables must also be transformed from three-
dimensional arrays to two-dimensional arrays. This may not be what existing end-users desire. So
currently we simply define three-dimensional latitude and longitude variables to store the retrieved
latitude and longitude values. The CF tools can open the file but fail to visualize the physical variables.
This is a special case that we hope that CF communities can address in the future.

4.1.1.2. Swath

Generally an HDF-EOS2 swath provides two-dimensional latitude and longitude fields. Those fields are
naturally mapped to CF’s two-dimensional latitude and longitude coordinate variables. The coordinate
attributes described in section 5.1 should be created for each field that has values at every location
described by latitude and longitude. For swath that uses the HDF-EOS2 dimension map technique, the
latitude and longitude values will be interpolated according to HDF-EOS2’s dimension map formula. The
parameters required by the dimension map can be retrieved by using the HDF-EOS2 APIs. The dimension
sizes of the CF latitude and longitude variables should be adjusted according to the information derived
by the dimension map parameters. We also encounter a small amount of HDF-EOS2 swath products that
store the latitude and longitude fields in one-dimensional arrays. Our approach is still to map latitude
and longitude to CF variables and ensure the units attributes of latitude and longitude to follow the CF
conventions. Currently CF tools may not be able to visualize these swath products. This is another
special case that we hope that CF communities can address in the future.

4.1.2. HDF4

For an NASA HDF4 file, there is no generic model to map latitude and longitude to CF. Different products
may need to be addressed individually. We observe that NASA data centers are still updating the HDF4
data products. Furthermore, we also observe that the way to retrieve latitude and longitude
information may be different in the new versions of some HDF4 data products. This document only
addresses the versions of the NASA HDF4 products we have investigated. However, one should also note
that although the new products may have different layouts of latitude and longitude; the mapping
principle basically stays the same.

The main NASA HDF4 products we currently provide latitude and longitude mapping information are
Tropical Rainfall Measuring Mission (TRMM) products, Clouds and the Earth’s Radiant Energy System
(CERES) products and Ocean Biology Processing Group (OBPG) products.

We evaluated these HDF products when we first implemented the HDF4 OPeNDAP handler in 2008.
After the implementation, we found that not all NASA data centers that distributed these data products
used the HDF4 OPeNDAP handler. As the HDF4 OPeNDAP handler comes into the maintenance mode,
we only add the support of the HDF4 products distributed by the data centers that used the most up-to-

 Coordinate Mapping

Page 16 of 29

date version of the HDF4 OPeNDAP handler. The following subsections will briefly discuss how latitude
and longitude are obtained for these products. More information can be found under Appendix A.

4.1.2.1. TRMM

We support two versions of TRMM HDF4 products: TRMM version 6 and version 7.

4.1.2.1.1. Version 6

4.1.2.1.1.1 Swath

TRMM version 6 1B21, 2A12, 2B31 and 2A25 products are supported.

These products store both latitude and longitude in a three-dimensional field. The number of elements
of one dimension in this field is always 2. To facilitate the discussion, this dimension is referred as the
latlon dimension. If setting the index of the latlon dimension to be 0, the subset of the three-
dimensional array actually stores the values of the latitude of this swath. If setting the index of the
latlon dimension to be 1, the subset of the three-dimensional array stores the values of the longitude of
this swath. In this way we can decompose this field into two coordinate variables, one for latitude and
another for longitude. We then map this swath to CF like a general HDF-EOS2 swath described in 4.1.1.2.

4.1.2.1.1.2 Grid

TRMM version 6 3A46, 3B42 and 3B43, CSH products are supported.

These products don’t provide latitude and longitude. Instead, latitude and longitude are calculated
based on the outside document. One-dimensional latitude and longitude CF variables are defined to
store the latitude and longitude values. More information regarding the retrieval can be found under
Appendix A.

4.1.2.1.2. Version 7

4.1.2.1.2.1 Swath

We support TRMM version 7 1B01, 1B11, 1B21, 1C21, 2A12, 2A21, 2A23, 2A25 and 2B31 swath products.

The latitude and longitude values of these products are stored in the Latitude and Longitude fields under
the vgroup swath. Both fields are represented as two-dimensional arrays that describe a typical swath
on a horizontal plane. So these latitude and longitude fields are just mapped to two-dimensional latitude
and longitude coordinate variables like a general HDF-EOS2 swath described in 4.1.1.2.

4.1.2.1.2.2 Grid

We support TRMM version 7 3A11, 3A12, 3A25, 3A26, 3B31, 3B42 and 3B43 products.

3A11, 3A12, 3A26, 3B42 and 3B43 are all represented as one single grid under the vgroup Grid. The
3A25 product is represented as two grids under the vgroup Grid1 and Grid2. Latitude and longitude
values for a single grid can be retrieved from a file attribute GridHeader. Latitude and longitude values
for the 3A25 product can be retrieved from the file attribute GridHeader1 and GridHeader2. The
latitude and longitude values retrieved from these attributes can be stored in two orthogonal one-
dimensional arrays. Therefore, one-dimensional latitude and longitude CF variables are defined. The rest
of the mapping is similar to the HDF-EOS2 dimension reducing grid case described in section 4.1.1.2.

 Coordinate Mapping

Page 17 of 29

4.1.2.2. CERES

Currently we only support several CERES grid products. The versions of these products are from Edition
1 to 3. The abbreviated letters based on the documentation and the file names are used to distinguish
these CERES grid products. More information on how the latitude and longitude of these products are
retrieved can be found in Appendix A.

The latitude and longitude of CERES SYN and CERES AVG grids can be directly retrieved from the fields
colatitude and longitude. They can be mapped to two-dimensional CF coordinate variables that store
the latitude and longitude values. The rest of the mapping is similar to the general HDF-EOS2 grid
mapping described in section 4.1.1.1.1.

CERES ISCCP-D2like-day and CERES SRBAVG3 grids are CERES nested grids. Latitude and longitude of
these products are calculated according to the CERES nested grid formula. Two-dimensional CF
coordinate variables are created to store the latitude and longitude values retrieved by the CERES
nested grid formula. The rest of the mapping is similar to the general HDF-EOS2 grid mapping described
in section 4.1.1.1.1.

Latitude and longitude values of CERES ISCCP-D2like-GEO and CERES ES4 products are stored as three-
dimensional array data fields. However, these three-dimensional arrays can be condensed to one-
dimensional arrays and are mapped to one-dimensional CF coordinate variables. The rest of the
mapping is similar to the HDF-EOS2 dimension reducing grid case described in section 4.1.1.2.

4.1.2.3. OBPG

We only support the following OBPG products that can be found under the OBPG website [6]. These
products are SeaWIFS, OCTS, CZCS, MODISA, MODIST level 2 and level 3 standard Mapped Image
Products (l3m).

Level 2 products are equivalent to the HDF-EOS2 swath that uses the dimension map technique to
reduce the latitude and longitude space. Similarly, subsets of latitude and longitude values are stored in
the corresponding two-dimensional HDF4 fields. The complete latitude and longitude values can be
obtained by interpolating the subsetted values according to the parameters that can be retrieved by
using the HDF4 APIs. The HDF4 fields that store the subsets of latitude and longitude are mapped to the
CF coordinate variables. However, the dimension sizes of the CF coordinate variables should be
increased to be consistent with the number of physical data points.

Level 3m products are equivalent to the dimension reducing case of the HDF-EOS2 grid described in
section 4.1.1.1.2. However, latitude and longitude values need to be calculated based on the
parameters stored in several HDF4 file attributes. Two CF coordinate variables can be created to store
the retrieved latitude and longitude values respectively.

4.1.2.4. Other products

Some NASA HDF4 products (AVHRR etc.) use the SDS dimensional scale APIs to store the scales of a SDS
dimension. For such a case, SDS dimension scales are retrieved and are mapped to coordinate variables.
We do not provide specification on how to check whether these coordinate variables contain latitude
and longitude information. However, we try to make these coordinate variables follow COARDS. If the
HDF4 products have coordinate variables that store the latitude and longitude values, the physical
variables of these products can still be opened and plotted by CF tools.

 Coordinate Mapping

Page 18 of 29

4.2. Other coordinates

CF requires that each dimension that is not associated with latitude or longitude also has a
corresponding coordinate variable. However, many NASA HDF4 and HDF-EOS2 products do not specify
these coordinate variables. Some products do not even provide the information about these
coordinate variables at the product specification. For the CF tool to visualize the physical variables that
contain such a dimension, a coordinate variable corresponding to this dimension must be provided. We
observe that a variable that misses one or two coordinate variables for the corresponding dimensions is
often a three or higher dimensional variable. The other coordinates of such a variable always include
latitude and longitude. Based on our communications with NASA data center developers, it is desirable
that such a variable can be visualized level by level in a horizontal plane. To fulfill this request, if we find
a dimension that misses the coordinate variable, a proxy coordinate variable for that dimension will be
generated. The value of this coordinate variable is index number 0, 1, 2, 3, etc. Attribute units with the
value level is added to this coordinate variable so that the COARDS conventions are followed. By
handling in this way, such a variable can be visualized by CF tools level by level in a horizontal plane.

Some NASA HDF4 and HDF-EOS2 product specifications provide values of some dimensions that are not
associated with latitude and longitude. Naturally these dimension values should be used as values of the
corresponding coordinate variables. Indeed, we create coordinate variables in this way for some of
these products. However, for the rest products, we find that values of some of these dimensions do not
conform to the definition of the coordinate variables specified in the CF conventions and thus cannot be
visualized by CF tools if we assign these dimension values to the coordinate variables. According to the
CF conventions, except for latitude and longitude, a coordinate variable is a one-dimensional variable
and it must not have any missing data and must be strictly monotonic. But these dimension data either
contain missing values or are not strictly monotonic. For these products, we still provide a proxy
coordinate variable that fills with the index number to replace the values specified in the product
specification. We add an attribute comment to store the information about the dimension based on the
product specification.

 CF attributes

Page 19 of 29

5. CF attributes

CF conventions list many attribute names and the usage for the user communities. However, to make CF
tools visualize the NASA HDF4 and HDF-EOS2 products, only a few key attributes need to be considered.
These attributes are coordinates, units, _FillValue, valid_range(or valid_min, valid_max),scale_factor
and add_offset, long_name. In this section, we provide the mapping information of these key attributes.

5.1. Coordinates

For products such as MODIS swath or MODIS sinusoidal grid, latitude or longitude values are stored as
two-dimensional arrays that cover every location a physical variable was measured on a horizontal
plane. For these products, the attribute coordinates needs to be provided for each physical variable
measured at those locations. This attribute specifies the name list of the corresponding coordinate
variables of the physical variable. For example, a variable temperature is stored as a two-dimensional
array as follows:

Float Temperature [AlongTrack][CrossTrack]

The latitude and the longitude are defined as data arrays:

Float Latitude [AlongTrack][CrossTrack]

Float Longitude [AlongTrack][CrossTrack].

To make the CF tools visualize Temperature, the CF attribute coordinates needs to be added. The values
of the coordinates should contain the names of the variables that store the latitude and longitude
values. In this case, they are Latitude and Longitude as the form:

coordinates = “Latitude Longitude”

For cases such as the one discussed in section 4.1.1.1.2, the latitude and longitude values are stored as
two orthogonal one-dimensional arrays. The COARDS conventions are followed and the coordinates
attribute is not necessary.

5.2. Units

We enforce that the units attributes of the CF variables that store the latitude and longitude values exist
and they should strictly follow CF since these attributes are crucial for CF tools to plot the data. The
attribute units of the variable that stores latitude is degrees_north and the attribute units of the variable
that stores longitude is degrees_east.

As described in section 4.2, we may need to add proxy coordinate variables for the dimensions that
don’t have any dimension values or that have dimension values but not conforming to CF. For these
proxy coordinate variables, the units should always be level.

5.3. _FillValue

CF requires using attribute _Fillvalue to describe missing or undefined data. Without providing
the_FillValue attribute, the CF tools may treat the undefined or missing data as real data, thus generate
wrong plots. Some NASA HDF-EOS2 and HDF4 products contain undefined data values but don’t provide
the _FillValue attribute. Some products use an attribute name other than _FillValue to represent the

 CF attributes

Page 20 of 29

undefined data or missing data. When mapping such a file to CF, the attribute _FillValue is created or
the equivalent attribute is renamed to _FillValue to store the undefined or missing data.

CF also requires that the _FillValue attribute must be the same type as its associated variable. However,
for some NASA HDF-EOS2 and HDF4 products, the data type of the _Fillvalue attribute is different than
the associated variable, so the data type of _Fillvalue attribute should be correct to be the data type of
the associated variable.

5.4. valid_range(valid_min and valid_max)

CF attribute valid_range represents smallest and largest valid values of a variable. valid_range can be
replaced by valid_min and valid_max. Valid_min is the smallest valid value of a variable. Valid_max is
the largest valid value of a variable. Attributes valid_min and valid_max are required if all the following
conditions apply:

 There are multiple missing or undefined values or other special values.

 These values should be smaller than valid_min and larger than valid_max.

 Attribute valid_range is not presented.

Some NASA HDF4 and HDF-EOS2 products use different attribute names to represent smallest and
largest valid values of a variable. To make the CF tools obtain the correct information of the valid data
range, the attribute names need to be changed to follow CF. We also find that some products also use
the same scale_factor and add_offset attributes as CF conventions specify but they don’t follow the CF
data packing rule. This will make their valid_range value invalid if using CF tool to plot the data.
Valid_range needs to be recalculated. More information regarding this topic is discussed in section 5.5.

We also encounter some NASA products that only have the minimum valid values but don’t have the
valid_min attribute. For such a case, an attribute valid_min is added to store the minimum valid value.

5.5. scale_factor and add_offset

Scale_factor and add_offset are used by Earth Science users to pack the data in order to reduce the file
size. To pack the data, certain rules need to be provided.

The CF conventions enforce the rule listed below to pack the data and the CF tools will follow this rule to
obtain the final data.

Final_data_value = scale_factor * Raw_data_value + add_offset

However, some HDF4 and HDF-EOS2 data products have the same attribute names scale_factor and
add_offset but use different rules to pack the data. This will make the CF tools apply the wrong packing
rule to the original data, thus will generate the wrong plot. In order to make the CF tool correctly plot
the data, we first check if the data packing rule of the HDF data is the same as the CF. If the rule is
different, two options can be applied.

The first option is unpacking the data with the product’s own data packing rule and then removing the
scale_factor and add_offset attributes. If valid_range(or valid_min, valid_max) attribute is also present
for the variable, we also calculate the new valid_min and valid_max based on the product’s own data
packing rule. As long as we know how the data is packed, we can unpack the data for all the data
products that don’t follow the CF packing rule. However, this method may demand huge computation
time and thus may cause the performance deterioration.

 CF attributes

Page 21 of 29

Because of the performance issue of the first option, we also provide a second option. For many
products we evaluate, although the data packing rule doesn’t follow the CF conventions, the values of
scale_factor and add_offset attributes can be transformed to new values so that CF tools can correctly
interpret the data by following the CF data packing rule. For example, Some MODIS products adopt the
following data packing rule:

Final_data_value = scale_factor*(raw_data_value – add_offset)

To transform the original scale_factor and add_offset to a new pair of scale_factor and add_offset so
that the CF packing rule can be conformed, we do the following:

new scale_factor = scale_factor

new add_offset = -1 * scale_factor*add_offset

In this way, the CF data packing rule can be applied with the new scale_factor and add_offset values.

The restriction of the second option is that it requires the data packing rule follows a certain pattern.
This may not be always true. For example, the following data packing rule cannot be transformed to the
CF packing rule:

Final_data_value = 10^ ((scale_factor*raw_data_value+add_offset)

Currently for the examined NASA HDF-EOS2 and HDF4 products that don’t follow the CF data packing
rules, new scale_factor and add_offset values can be calculated to fulfill the CF data packing rule.
Appendix D lists these NASA HDF-EOS2 and HDF4 products that the scale_factor and the add_offset
values can be translated to follow the CF conventions.

5.6. long_name

CF attribute long_name aims to provide a long descriptive name for the variable. It is not required but it
is strongly recommended. Some CF tools will display the long_name as the plot title. When mapping
HDF4 to CF, if the long_name attribute is not present in the HDF4 variable and the original field name
contains the non-alphanumeric characters not allowed by the CF conventions, the long_name attribute
can be used to store the original field name.

 References

Page 22 of 29

6. References

1. HDF Specification and Developer’s Guide

http://www.hdfgroup.org/release4/doc/DSpec_html/DS.pdf

2. HDF-EOS2 user’s guide

http://newsroom.gsfc.nasa.gov/sdptoolkit/userguide.html

3. CF conventions

http://cfconventions.org/

4. HDF4 OPeNDAP handler

http://hdfeos.org/software/hdf4_handler.php

5. HDF4 to CF conversion toolkit

http://hdfeos.org/software/h4cflib.php

6. Ocean Biology Processing Group data site

http://oceandata.sci.gsfc.nasa.gov/

 Revision History

Page 23 of 29

7. Revision History

January 8, 2015 Version 1.0.draft

 Acknowledgements

Page 24 of 29

8. Acknowledgements

The author especially would like to thank Mr. Dan Marinelli of NASA ESDIS project for his persistent
support of this work. The author also likes to thank Dr. Fan Fang, Dr. James Johnson, Dr. Zhong Liu, Dr.
Chris Lynnes and Dr. Abe Taaheri at the Raytheon for providing many technical suggestions and advice
during the process of implementing the CF option of the HDF4 OPeNDAP handler.

This work was supported by Subcontract number 114820 under Raytheon Contract number
NNG10HP02C, funded by the National Aeronautics and Space Administration (NASA). Any opinions,
findings, conclusions, or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of Raytheon or the National Aeronautics and Space Administration.

 Appendix A: Obtain latitude and longitude for some NASA HDF4 products

Page 25 of 29

Appendix A: Obtain latitude and longitude for some NASA HDF4 products

The following table lists the information on how to retrieve latitude and longitude values of some NASA
HDF4 products to follow the CF conventions.

Table 8. How to retrieve latitude and longitude for some NASA HDF4 products

Mission Product Name Description Documents* Example files

TRMM Version 6 Swath:

1B21,2A12,2A25,2B31

Latitude and longitude values are
stored in one field geolocation.

TRMM-v6-to-v7

2B31v6.HDF

Version 6 Grid:

3A46,3B42,3B43,CSH

Latitude and longitude are calculated
according to the outside document.

3B42-43-V6-latlon
3A46-readme
CSH-readme

3B42-V6.HDF
3A46-V6.HDF
CSH-V6.HDF

Version 7 Swath:

1B01,1B11,1B21,1C31,2A12,
2A21,2A23,2A25,2B31

Latitude and longitude are directly
retrieved from the corresponding
fields.

TRMM-V7-readme

2A12-V7.HDF

Version 7 Grid:

3A11,3A12,3A25,3A26,3B31,
3B42, 3B43

Latitude and longitude are retrieved
from a file attribute GridHeader.

 TRMM-V7-readme 3B43-V7.HDF (single grid)
3A25-V7.HDF (multiple grids)

CERES Edition 1-3 Grid:

SYN , AVG

Latitude and longitude can be
directly retrieved from the fields
colatitude and longitude.

CERES-SYN-AVG-ZAVG

CER-SYN.hdf

CER-AVG.hdf

Edition 1-3 Grid:

ISCCP-D2like-day, SRBAVG3

Latitude and longitude are calculated
according to the outside document.

CERES-nestedgrid

CERES-ISCCP-D2-Day

CER-ISCCP-D2-Day.hdf

CER-SRBAVG3.hdf

Edition 1-3 Grid:

ISCCP-D2like-GEO , ES4

Latitude and longitude are stored in
fields colatitude and longitude. These
fields are stored as three-
dimensional arrays. These three-
dimensional arrays can be condensed
to one-dimensional latitude and
longitude arrays.

CERES-ISCCP-D2-GEO

CERES-ES4

CER-ISCCP-D2-GEO.hdf

CER-ES4.hdf

Edition 1-3 Grid:

 ZAVG

Latitude can be calculated according
to the documentation. Longitude is
not needed.

CERES-SYN-AVG-ZAVG

CER-ZAVG.hdf

OBPG L2 swath:

SeaWIFS, OCTS, CZCS,

MODISA,MODIST

Subset of latitude and longitude
values can be retrieved from the
fields latitude and longitude. For the
older version, the final latitude and
longitude fields need to be
interpolated based on file attributes
“Number of Pixel Control Points”,
“Pixels per Scan Line” and “Number
of Scan Line”.

OBPG-l2

CZCS-L2.hdf

MODIST-L2.hdf

L3SMI grid:

SeaWIFS ,OCTS, CZCS,

MODISA,MODIST

The latitude and longitude are
calculated based on the file
attributes “Latitude Step”,
“Longitude Step”, “SW Point Latitude
“ and “SW Point Longitude”.

OBPG-l3m

MODISA-L3m.hdf

Note: The document source is based on the best effort we can find on-line at the time this document is written. Not all
documents contain clear information on how to retrieve latitude and longitude.

http://pps.gsfc.nasa.gov/Documents/formatChangesV7.pdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/2B31_CSI.990911.10296.KORA.6.HDF
http://disc.sci.gsfc.nasa.gov/additional/faq/precipitation_faq.shtml#lat_lon
http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_3A46_readme.shtml
http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_CSH_readme.shtml
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/3B42.100331.21.6A.HDF
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/3A46.080101.2.HDF
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/CSH.070901.6.HDF
http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/2A12.20140308.92894.7.HDF
http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/3B43.20130901.7.HDF
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/3A25.20140101.7.HDF
http://ceres.larc.nasa.gov/products.php?product=SYN-AVG-ZAVG
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/CER_SYN_Aqua-FM3-MODIS_Edition2B_007005.20051031.hdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/CER_AVG_Aqua-FM3-MODIS_Edition2B_007005.200510.hdf
https://eosweb.larc.nasa.gov/sites/default/files/project/ceres/quality_summaries/srbavg_ed2d/nestedgrid.pdf
https://eosweb.larc.nasa.gov/sites/default/files/project/ceres/quality_summaries/CER_ISCCP-D2like_Edition3A.pdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/CER_ISCCP-D2like-Day_Aqua-FM3-MODIS_Beta1_023030.200612.hdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/CER_SRBAVG3_Aqua-FM3-MODIS_Edition2A_016031.200510.hdf
http://ceres.larc.nasa.gov/documents/DPC/DPC_current/pdfs/DPC_ISCCP-D2like-GEO_R5V3.pdf
https://eosweb.larc.nasa.gov/sites/default/files/project/ceres/quality_summaries/CER_ES4_Terra_Edition3.pdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/CER_ISCCP-D2like-GEO_Composite_Beta1_023031.200510.hdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/CER_ES4_TRMM-PFM_Edition1_009001.199808.hdf
http://ceres.larc.nasa.gov/products.php?product=SYN-AVG-ZAVG
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/CER_ZAVG_Aqua-FM4-MODIS_Edition2B_007005.200503.hdf
http://oceancolor.gsfc.nasa.gov/DOCS/Ocean_Level-2_Data_Products.pdf
http://oceancolor.gsfc.nasa.gov/DOCS/Ocean_Level-2_Data_Products.pdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/C1978303124834.L2_MLAC.hdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/T2010001000000.L2_LAC_SST.hdf
http://oceancolor.gsfc.nasa.gov/DOCS/Ocean_Level-3_SMI_Products.pdf
https://gamma.hdfgroup.org/ftp/pub/outgoing/NASAHDF/A20021612002192.L3m_R32_NSST_4.hdf

 Appendix B: Special handling from HDF4 and HDF-EOS2 to DAP2

Page 26 of 29

Appendix B: Special handling from HDF4 and HDF-EOS2 to DAP2

One software package implemented according to the specification is the CF option of the HDF4
OPeNDAP handler. OPeNDAP is a web service software package. Users can display HDF4 and HDF-EOS2
data via OPeNDAP’s clients. DAP stands for Data Access Protocol. The current version of the HDF4
OPeNDAP handler maps the HDF4/HDF-EOS2 to version 2 of DAP(DAP2). Roughly DAP2 represents the
metadata in two entities: Data Descriptor Structure (DDS) to store the variable type and dimension
information. Data Access Structure (DAS) to store the file and variable attribute information. One can
review more about the basic DAP concept at http://docs.opendap.org/index.php/UserGuide. This
appendix only describes some special handling related to the mapping from HDF4 and HDF-EOS2 to
DAP2.

1. ECS Metadata

Many NASA HDF-EOS2 and HDF4 products store EOSDIS Core System (ECS) metadata inside HDF-EOS2
and HDF4 files. To make the DAS output of DAP2 easy to read, a special parser is applied to all the ECS
metadata attributes.

Generally structmetadata refers to an HDF-EOS2 library generated file attribute that stores the
dimension and geo-location information of the HDF-EOS2 objects in an HDF-EOS2 file. If an HDF-EOS2
file contains many fields, the size of structmetadata may be very large. To speed up the performance, by
default the DAS output of the structmetadata is turned off since the information in the structmetadata
has been used by the handler to generate DAP’s DDS and DAS.

2. Data Type

For most HDF4 datatypes, there is one to one mapping from HDF4 to DAP2. However, for the HDF4
datatype DFNT_CHAR, DFNT_UCHAR, DFNT_UINT8 and DFNT_INT8, special consideration is needed.
Based on our evaluation of NASA HDF4 and HDF-EOS2 products, we will carry out the following mapping
for the above datatypes.

HDF4 datatype DFNT_CHAR is used to store ASCII characters in NASA HDF4 or HDF-EOS2 products. So
DFNT_CHAR is mapped to DAP2 string for variables and attributes. DFNT_UCHAR is equivalent to
unsigned char in C. Although we have not observed the usage of DFNT_UCHAR in NASA HDF4 and HDF-
EOS2 products we have evaluated. To make the mapping complete, we do the following: map
DFNT_UCHAR to DAP2 Byte for variables and to DAP2 string for attributes. The reason to map
DFNT_UCHAR to DAP2 string for attributes is because HDF4 explicitly provides DFNT_INT8 and
DFNT_UINT8 for applications to store numeric 8-bit attributes and the usage of DFNT_UCHAR to store
numeric 8-bit values is unnatural. However, it is possible for applications to use DFNT_UCHAR for
character attributes. On the other hand, using DFNT_UCHAR instead of DFNT_CHAR for a character
array in variables is unnatural to the writer of this document. One conjecture is that applications may be
more careful in creating a variable. They may be more carefully to choose the appropriate character
type compared with the creation of an attribute with the character type. In other words, they may
misuse DFNT_UCHAR to represent characters in attributes but the chance to misuse DFNT_UCHAR to
represent characters in variables is much smaller.

Datatype DFNT_UINT8 is equivalent to DAP2 Byte. There is no ambiguity to carry out the mapping.
DFNT_UINT8 on the other hand, need to map to a bigger size integer datatype to avoid the data

http://docs.opendap.org/index.php/UserGuide

 Appendix B: Special handling from HDF4 and HDF-EOS2 to DAP2

Page 27 of 29

overflow. To conform to the default option of the HDF4 OPeNDAP handler, DFNT_UINT8 is mapped to
32-bit integer in DAP2.

There is an exception for the CF attribute _FillValue. Regardless of the data type of this attribute, it
should always be mapped to a numeric type. If the data type is DFNT_CHAR, it will be mapped to 32-bit
integer in DAP2. If the data type is DFNT_UCHAR, it will be mapped to Byte in DAP2. Furthermore, the
attribute data type of the _FillValue should be the same as the data type of the variable. Table 8
summarizes the HDF4 to DAP2 datatype mapping.

Table 9. HDF4 to DAP2 data type mapping

HDF4 Data type DAP2 Data type

8-bit unsigned integer(DFNT_UINT8) Byte

8-bit signed integer(DFNT_INT8) Int32

16-bit unsigned integer UInt16

32-bit unsigned integer UInt32

16-bit signed integer Int16

32-bit signed integer Int32

32-bit floating-point Float32

64-bit floating-point Float64

char(DFNT_CHAR) String

unsigned char(DFNT_UCHAR) for
variable

INT32

unsigned char(DFNT_UCHAR) for
attribute

String

3. HDF4 vdata

In general, HDF4 vdata fields are mapped to DAP2 Arrays. However, sometimes the HDF4 vdata field
that has a smaller number of records may logically mean metadata that is normally represented as an
attribute. So in our implementation, we provide a DAP Back End Server(BES) dynamical operation key to
map HDF4 vdata fields to attributes in DAS if the user sets that key value to be true.

 Appendix C: Using tools to supplement CF information

Page 28 of 29

 Appendix C: Using tools to supplement CF information

Although the HDF4 OPeNDAP handler and the H4toCF conversion toolkit follow this specification to
make non-CF attributes and even variables of many NASA HDF-EOS2 and HDF4 products follow CF,
attributes and variables of some unexamined products may still need to be corrected so that CF tools
can successfully visualize the data. In this appendix, we list two netCDF tools that can help users to
correct the information by themselves.

1. Using NcML

NcML is an XML representation of metadata in a netCDF file. Both OPeNDAP Hyrax’s NcML module and
NcML local and web services based on Unidata’s netCDF Java library can be used to do the following:

 Add, modify, or remove both attributes and variables

 Combine multiple datasets into a single "virtual" data set using "union",

 "joinNew", or "joinExisting" aggregations.

For more information, one can check the following NcML example page provided by The HDF Group for
more information on how to use NcML to correct attributes.

http://hdfeos.org/examples/ncml.php

2. Using NCO

NetCDF Operator (NCO) can be used to edit variables and attributes of a netCDF file. It can also be used
to supplement CF information to ensure that CF tools can correctly visualize the converted netCDF files.

For more information one can check the NCO example page provided by The HDF Group
http://hdfeos.org/software/nco.php

 Appendix D: NASA HDF products that don’t follow CF data packing rules

Page 29 of 29

Appendix D: NASA HDF products that don’t follow CF data packing rules

We will only list the supported products that don’t follow the CF scale and offset data packing rule in
this appendix.

1. MODIS products

There are two types of data packing rules for MODIS products.

Type A: final_data_value = scale_factor*(raw_data_value-add_offset)

Type B: final_data_value = (raw_data_value – add_offset)/scale_factor

Table 10 lists the detailed MODIS product names that follow either Type A or Type B to pack the data.

Table 10. MODIS products that don’t follow CF data packing rules

Type A Product Type B Product

MODIS level 1B

(MOD/MYD02HKM, MOD/MYD021KM etc.)

MOD/MYD 03

MOD/MYD ATML2

MOD/MYD 05

MOD/MYD 06

MOD/MYD 07

MOD/MYD 08_D3

MOD/MYD 09Q1

MOD/MYD 09A1

MOD/MYD 09GA

(Fields under grid MODIS_Grid_1km_2D)

MOD/MYD 09GHK

(Fields under grid MODIS_Grid_1km_2D)

MOD/MYD 15A2

MOD/MYD 15A2GFS

MOD/MYD 17A2

MOD/MYD 29E1

MOD/MYD 43B4

MCD43B4

MCD43C1

MOD/MYD09 CMG

MOD/MYD09 GA

 (Fields under grid MODIS_Grid_500m_2D)

MOD/MYD09 GHK

(Fields under grid MODIS_Grid_500m_2D)

MOD/MYD 09GQK

MOD/MYD 13A

MOD/MYD 13A1
MOD/MYD 13C

MOD/MYD 13Q1

MOD/MYD 13C1

Note: Terra MODIS products are abbreviated “MOD”, Aqua MODIS products are abbreviated “MYD”. The combined Terra and Aqua MODIS
products are abbreviated “MCD”. Normally for any MOD product, it will have a corresponding MYD product. We evaluate at least one MOD or
MYD product listed in the MOD/MYD product pair.

2. TRMM version 7 Swath

Some TRMM version 7 swath products use the following rule to pack their data.

final_data_value = raw_data_value/scale_factor

These products are TRMM 1B11, 1B21,1C21, 2A25 and 2B31 products.

